Synaptic reentry reinforcement based network model for long-term memory consolidation.

نویسندگان

  • Gayle M Wittenberg
  • Megan R Sullivan
  • Joe Z Tsien
چکیده

The conversion of newly formed declarative memories into long-term memories is known to be dependent on the hippocampus. Recent experiments suggest that memory consolidation requires reactivation of the NMDA receptor in CA1 during the initial week(s) after training. This led to the hypothesis that the repeated post-learning reinforcement of synaptic modifications, termed synaptic reentry reinforcement (SRR), is essential for long-term memory consolidation and storage. Based on experimental observations, we have built a computational model to further illustrate and explore the effect of the SRR process on the formation of long-term memory. We show that SRR is capable of strengthening and maintaining memory traces despite inherent variability in the system due to such processes as the turnover of synaptic receptors and their associated signaling and structural proteins. Furthermore, we demonstrate that new rounds of synaptic modification triggered by memory reactivation, either during conscious recall or sleep, could lead to the selective consolidation of a subset of memory traces. Finally, we show why the SRR process in the hippocampus is required during the initial post-training weeks for synaptic reinforcement based memory consolidation in the cortex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A synaptic reinforcement-based model for transient amnesia following disruptions of memory consolidation and reconsolidation.

The observation of memory recovery following post-training amnestic interventions has historically caused controversy over the meaning of this finding, leading some authors to question the paradigm of a consolidation period for memories. Similarly, recent demonstrations of transient amnesia caused by interventions following memory reactivation have been used to question the existence of a retri...

متن کامل

NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation.

The hippocampal CA1 region is crucial for converting new memories into long-term memories, a process believed to continue for week(s) after initial learning. By developing an inducible, reversible, and CA1-specific knockout technique, we could switch N-methyl-D-aspartate (NMDA) receptor function off or on in CA1 during the consolidation period. Our data indicate that memory consolidation depend...

متن کامل

Memory Consolidation through Reinstatement in a Connectionist Model of Hippocampus and Neocortex

Current memory models assume that consolidation of long-term memory in humans is facilitated by the repeated reinstatement of previous activations in the cortex. These reactivations are known to be driven by the hippocampus as part of the medial temporal lobe (MTL) memory system. It has been shown, that by implementing a Hebbian depression of synaptic connections, a special kind of biologically...

متن کامل

Reinforcement of rat hippocampal LTP by holeboard training.

Hippocampal long-term potentiation (LTP) can be dissociated in early-LTP lasting 4-5 h and late-LTP with a duration of more than 8 h, the latter of which requires protein synthesis and heterosynaptic activity during its induction. Previous studies in vivo have shown that early-LTP in the dentate gyrus can protein synthesis-dependently be transformed (reinforced) into late-LTP by the association...

متن کامل

Role of STDP in regulation of neural timing networks in human: a simulation study

Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Hippocampus

دوره 12 5  شماره 

صفحات  -

تاریخ انتشار 2002